Fig. 475. *Mesosignum usheri* (Menzies) (2 mm)

Range: Caribbean Sea off Cartagena, Colombia (2875 to 2941 m)

The species was found near to *M. kohleri*, but it differs from that species in that it has long posterolateral spines on the pleotelson. The lateral margins of the pleotelson are convex.

DENDROTIONIDAE

The species in the family are similar to those in the family Munnidae. They, however, have spines on their bodies and many species have in addition long lateral lappets. Both species with eyes and blind ones are included in the family. The apical 2 articles on the maxillipedal palp of 5 articles are much narrower than the endite of the maxilliped itself (Fig. 370p). The pereopods, except for the first one which is gnathal, are ambulatory and with a single dactyl claw. Only two species, each in a different genus, are found in North American waters.

KEY TO THE GENERA OF DENDROTIONIDAE

1a. Lateral bulges (perhaps vestigal eyes) present on cephalon; cephalon longer than broad; uropods biramus, with rami extremely long (Fig. 42b); single produced lappet on all pereonal segments either simple or serrated, but never multi-branched

* Acanthomunna
Fig. 476. *Acanthomunna tannerensis* (Schultz) (3.5 mm)

Range: Tanner Canyon on shelf off southern California (813 m)

The uropods on this specimen are the only ones to have ever survived the rough process of sorting to which isopods and other benthic animals taken from the deep sea are usually subjected. Whether they are representative of the uropods found on other species is not known.

Figure 476. *Acanthomunna tannerensis*.

1b. Eyes or lateral bulges absent; cephalon quadrangular or longer than broad; lateral spines on all peraeonal segments simple or serrated, but never multibranched *Dendrotion*

Fig. 477. *Dendrotion hansenii* (Menzies) (3.5 mm)

Range: Caribbean Sea, south of Jamaica (1244 m)

This species is easily distinguished from other asellotes by the very long pointed lateral lappets on the edges of the peraeonal segments. It is interesting to note that those coming from peraeonal segments I to IV come from the edge of the peraeonal segment itself, but those arising from segments V to VII are really from the coxal segments of the peraeopods, not from the segment edges.

ILYARACHNIDAE

There are about 36 species in the widely distributed genus *Ilyarachna*, but there are only 3 recorded from North American
The species are characterized by long peraeopods, a wide cephalon and narrow pleotelson. Peraeopod I is gnathal, peraeopods II to IV are ambulatory and the last three are natatory. Occasionally the species are taken in plankton tows.

Fig. 478. *Ilyarachna acarina* (Menzies and Barnard) (4 mm)

Range: Southern California coastal slopes (73 to 507 m)

The species is common and abundant in the moderately deep water off southern California and northern Mexico.

Fig. 479. *Ilyarachna profunda* (Schultz) (3 mm)

Range: La Jolla Canyon on shelf off southern California (461 to 1298 m)

The species lacks the conspicuous spines on the anterior borders of the peraeonal segments that are found in *I. acarina*. It also was taken in much deeper water than that species.
Fig. 480. *Ilyarachna hirticeps* (Sars) (7.5 mm)

Range: Greenland (20 to 435 m)

The species has very small spines on the anterior margins of the anterior peraeonal segments.

EURYCOPIDAE

The many species of this family are divided into 12 genera which are placed in four subfamilies. Species of three genera, in three of the subfamilies, have been recorded from North American waters. The peraeopods of the specimens are long and of two types. Peraeopods I to IV are ambulatory (peraeopod I can be gnathal) and peraeopods V to VII are natatory. A dactylus is present on the natatory peraeopods (it is absent on natatory peraeopods in members of Munnopsidae, a closely related family). The small body and very large peraeopods of the isopods enable the species to swim well and they are caught, sometimes in very large numbers, in plankton tows. Species of the family are blind and frequently have peraeonal segments fused with each other or with the pleon. The cephalon is usually separated from the peraeon. Both uniramus and biramus uropods are present among the species. The maxillipedal palp of five articles has the two distal narrower than the other three. The wider of the three basal articles has a particular pattern of lobes and/or setae on the medial border.

KEY TO THE GENERA AND SPECIES OF EURYCOPIDAE

1a. Uropods uniramus; pleotelson suboval with two pairs of lateral and one terminal spine; peraeopods I to IV of subequal length; peraeopods V to VII with narrow carpus and propodus (natatory setae present)

Acanthocope
Fig. 481. *Acanthocope spinosissima* (Menzies) (8 mm)

Range: Caribbean Sea, south of Jamaica (1224 m)

The food of this species, as stomach content analysis has revealed, consists of what are probably bacteria, protozoa and forminifera (a particular kind of abundant calcareous protozoan). Also polychaeta (a sea bottom worm related to the earthworm) and sponge spicules (the calcareous or silicate framework of sponges) have been found. The isopod then apparently eats either live or dead animal and bacterial material that is present in its habitat in the deep sea.

1b. Uropods biramus; pleotelson rarely with two pairs of lateral spines; peraeopod I much shorter than III and IV; peraeopods V and VII generally with carpus and propodus moderately or greatly expanded

2

2a. Maxilliped with articles four and five or palp abruptly narrower than article three and with medial margins never produced; articles three with fringe of setae or crenulations or both or medial border (Fig. 370e) Syneurycope

Fig. 482. *Syneurycope parallela* (Hansen) (3.7 mm)

Range: North Atlantic to past Cape Farewell (3474 m)

This species has coupling hooks on the medial edge of the maxilliped; *S. hansenii*, mentioned below, has none.
Fig. 483. Syneurycope hanseni (Menzies) (3.8 mm)
Range: North of Puerto Rico (5104 to 5122 m)

The lateral margins of the body in this species are convex when compared to the parallel body margin in S. parallela.

2b. Maxilliped never as described above (in 2a) 3
3a. Pleon not fused to peraeon; no dorsal spines present; long lappets on peraeons never present; basal segment of antenna one flattened and much wider than other segmentsEurycope

GENUS EURYCOPE

This large genus of about 36 species contains most non-spined members of the family. The body is generally oval and there are long peraeopods. Only the four following species have been recorded from North American waters until now.

Fig. 484. Eurycope cornuta (Sars) (4 mm)
Range: Greenland, Gulf of St. Lawrence and Atlantic coast of North America (91 to 732 m)

This species has a pointed rostrum or medial cephalic projection.
Fig. 485. *Eurycope complanata* (Bonnier) (5 mm)

Range: Davis Strait and southeast of Bermuda (2258 to 5779 m)

This species has a bifid medial cephalic projection.

![Figure 485. a. Eurycope complanata. b. Maxilliped. c. Uropod.](image)

Fig. 486. *Eurycope mutica* (Sars) (1.5 mm)

Range: Bay of Fundy to Norway (9 to 27 m)

![Figure 486. a. Eurycope mutica. b. Maxilliped.](image)

Fig. 487. *Eurycope californiensis* (Schultz) (3.5 mm)

Range: Newport Canyon on shelf off southern California (478 m)

The species has a produced, rounded medial cephalic projection.

![Figure 487. Eurycope californiensis.](image)
3b. Peraeonal segments V to VII immovably fused together and sometimes pleon fused to peraeon; dorsal spines almost always present; pleotelson with at least two pairs of lateral spines, apex never rounded

\[\text{Storthyngura} \]

GENUS STORTHYNGURA

The members of this genus were considered to be members of the genus *Eurycope* by the people who first describe them. Now there are about 32 species in the genus. Several species listed here are probably the same species only one is the adult and the other the juvenile.

KEY TO SPECIES OF STORTHYNGURA

4a. Medial dorsal spines present on peraeons

4b. Medial dorsal spines absent on peraeons \[S. \text{ truncata} \]

Fig. 488, *Storthyngura truncata* (Richardson) (3.8 mm)

Range: Georges Bank and near Martha’s Vineyard (2788 to 3225 m)

This species based on female specimens might prove to be the young or female of *S. magnispinis* mentioned below (p. 308), but more specimens must be collected before it can be definitely established.

5a. Posterior margin of pleotelson pointed, truncate or concave; dorsal spines on peraeonal segments V, VI and VII

5b. Posterior margin of pleotelson broadly rounded; no dorsal spines on peraeonal segments V, VI and VII \[S. \text{ snanoi} \]
Fig. 489. *Storthyngura snanoi* (Menzies) (3.2 mm)

Range: Caribbean Sea, north of Columbia (4071 m)

6a. Posterior margin of pleotelson truncate or concave

6b. Posterior margin of pleotelson pointed

S. caribbea

Fig. 490. *Storthyngura caribbea* (Benedict) (12 mm)

Range: Windward Islands, West Indies (1256 m)

The species has been considered as a subspecies; i.e., *S. pulchra caribbea*.

7a. Lateral lappets on peraeonal segments I, II and III at least as long as segment is long; coxal plates not apparent

S. magnispinis
Fig. 491. *Storthynagara* magnispinis (Richardson) (4 mm)

Range: Off Nantucket Shoals (2258 to 2704 m)

The species description is based on a single male specimen. It should be compared with specimens of *S. truncata* mentioned above (p. 306).

7b. Lateral lappets on peraeonal segments I, II and III shorter than peraeonal segment is long; coxal plates apparent in dorsal view .. *S. vemaee*

Fig. 492. *Storthynagara* vemaee (Menzies) (3.2 mm)

Range: Caribbean Sea, north of Columbia (4071 m)
SUBORDER EPICARIDEA

In the past the suborder Epicaridea has been called Bopyroidea. The species of the suborder range from very primitive isopods that are much like the archetype in body segmentation to very highly modified species that only superficially resemble other isopods. Epicaridean isopods undergo greater changes during development than do species of other groups. The egg develops into a larva with six peraeonal segments, the "epicaridean" stage. Animals of this stage free themselves from the marsupium and attach to a planktonic host (mostly copepods). There they molt to a stage with

![Diagram of Epicaridea nomenclature](image-url)
seven segments, the “microniscus” stage. The animals then molt again to a “cryptoniscus” stage and begin sexual differentiation (both males and females). The maturing juveniles detach from the first host and become planktonic again, then attach to a second host (almost any crustacean including other isopods) and grow. Through metamorphosis and maturity the female becomes somewhat of a peculiar egg case sometimes becoming quite indistinguishable as an isopod (Fig. 7h, i).

The male attaches to the pleopods or gets into the egg case of a female which is attached to a host and which is much larger than the male isopod. There it changes in form slightly, matures sexually, but does not usually grow. It is then able to fertilize the eggs of the female and the life cycle is repeated. The relations between the hosts and the life stages of the parasitic isopods are only beginning to become known, and the above stages have never been clearly recorded for any one species. Four families are recognized here as being present in North American waters although some workers recognize more.

![Figure 494. Epicarideae (Ventral view, general nomenclature).](image)

KEY TO FAMILIES OF EPICARIDEA

1a. Sac of eggs around very small body; signs of segmentation feebly indicated if at all; true peraeopods and other appendages rudimentary if present

 Cryptoniscidae (p. 337)
MARINE ISOPOD CRUSTACEANS

1b. Not as above ... 2

2a. Body without indications of rigid exoskeleton; body segmentation present; peraeons laterally expanded into thin, pleural lamellae ... Entoniscidae (p. 344)

2b. Not as above ... 3

3a. Body of female symmetrical or irregularly symmetrical in outline; segmentation apparent, but reduced; peraeopods from two to five; mouth in form of sucker ... Dajidae (p. 341)

3b. Body of female distinctly segmented and more or less asymmetrical; seven pairs of peraeopods, six of which can be absent on one side (exception, peraeopods I which are always paired) ... Bopyridae (p. 312)

BOPYRIDAE

There are more described species of Bopyridae than in the other epicaridean families in North American waters. The species are parasitic on decapods (crabs and shrimp). The body of both the male and female is segmented, and peraeopods are present and differ little in size and shape. Females have large asymmetrical bodies and males are small and symmetrical, frequently being found attached to or among the pleopods, or in the brood pouch of the female. The cephalon is generally distinct and eyes, if present, are tiny. The antenna and mouth parts are rudimentary. All seven segments of the peraeon are always laterally distinct, but in some instances some of the anterior segments are fused with the cephalon. Five pairs of oostegites are present, and knowledge of their form is useful since the most commonly encountered bopyrid is the gravid female. Coxal separations are present on the edges of the peraeonal segments, and large bosses or swellings are frequently present just medially to the coxal sutures. Seven pairs of prehensile peraeopods are almost always present, but in one group peraeopods are absent on one side on peraeons II to VII.

The pleon is always distinct and generally segmented or with indications of segmentation on the lateral margins. The lateral margins are frequently elongate. The pleopods are sometimes absent and when present they can be uniramus, biramus or triramus. They can be mistaken for extensions of the peraeonal segments if one is not careful. The uropods, if present, are generally simple and composed of lobes which look like the ends of the pleonal segments. A distinct telson is sometimes present, but many times it is fused to a pleonal segment to form a pleotelson.
A small male is frequently found clinging to the pleopods of the female in some species or living within the brood pouch with the eggs in other species. The male is small, symmetrical and distinctly segmented. It has very small antennae, mouth parts and short prehensile peraeopods that mostly have pointed dactyls. Sometimes the peraeopods are vestigial; i.e., consist only of stubs. The pleon is always distinct, but the segmentation of the pleon is not always distinct. The pleon usually lacks appendages, but a well defined pleotelson with long uropods are present in some species. The uropods are generally no longer than the ends of the pleonal segments in most species. The bopyrids are generally found in the branchial cavity of their decapod hosts. The males that are pictured here with the females are many times drawn at a scale much greater than that of the female. Most of the males are under 1.5 mm long.

Only a large male specimen is known for one species, *Bathygyge grandis Hansen* (7 mm), from Acapulco, Mexico. It was taken from the branchial cavity of the shrimp *Glyphocragon spinulosa*, and is sufficiently different from other males to be described as a new species. It is illustrated in figure 496.

KEY TO GENERA AND SPECIES OF BOPYRIDAE

1a. Body asymmetrical with one side greatly enlarged and longer than other side; only peraeopod I present on enlarged side; pleon composed of 4 segments and usually with pleotelson...
1b. Body slightly to greatly asymmetrical, but with both sides more or less developed; i.e., with all peraeopods present although they might be small and difficult to find; pleon usually of 5 segments plus pleotelson (some segments are at least laterally indicated) 3

2a. Pleonal extensions large, ovate and single (uniramus) or double (biramus), but if biramus then pleonal extension on 4 much longer than on 1 to 3 Hemiarthus

Fig. 497. Hemiarthus subcaudalis (Hay) (6 mm)
Range: Onslow Bay, North Carolina (about 20 miles off Beaufort Inlet) (18 m)

The species is from the gill chamber of the shrimp Synalpheus longicarpus which is found within the cavity of a sponge. The species of a different genus Synsynella deformans (p. 333) is found as a parasite on the same shrimp in the same locality. This is an example of two species of isopods exploiting the same host animal.

Fig. 498. Hemiarthus abdominalis (Kroyer) (9 mm)
Range: Circumpolar south to Massachusetts and Washington State (9 to 642 m)

The species is found as a parasite on the decapods of the genera Spirontocaris and Pandalus inhabitants of northern waters.
Fig. 499. *Hemiarthrus schmitti* (Pearse) (4.6 mm)

Range: East coast and Bimini, Bahamas

The species is parasitic on the shrimp *Synalpheus brooksi*. The lateral extensions of the pleonal segments are bifid with those of segment 4 the longest in this species.

2b. All (bifid number, eight) pleonal extensions about same size on each side *Diplophryxus*

Fig. 500(a). *Diplophryxus synalphei* (Pearse) (6.2 mm)

Range: South Carolina near mouth of New River

The species is found on the snapping shrimp *Synalpheus fritsmulleri elongatus*.

3a. Cephalon more or less symmetrical with lateral lobes on anterior third and set slightly in front of body margin; pleon with five segments indicated; pleotelson (no telson indicated) with elongate, lobate uropods ... *Aporobopyrus*
Fig. 500(b). *Aporobopyrus muguensis* Shiino (4 mm)

Range: Off Pt. Mugu, California (11 m)

The species is from the branchial cavity of *Pachycheles rudis*. A second species *A. ovi-formis* Shiino (3.5 mm) is also found in the same locality.

A. ovi-formis Shiino 1934

3b. Cephalon various; pleon and pleotelson various 4

4a. Pleon with lateral extensions of segments elongate and digitate, or with simple crenulated margins (Figs. 501 and 502) 5

4b. Pleon with lateral extensions long at times, but never digitate or crenulate; pleotelson or telson various 9

5a. All pleonal extensions elongate and digitate 6

5b. All pleonal extensions with simple crenulate margins *Ergyne*

Fig. 501. *Ergyne rissoi* (Nierstrasz and Brender (2 mm)

Range: Curacao, Dutch West Indies

6a. Pleon with 6 segments visible; telson elongate, but never with digitate borders ... *Ione*
Fig. 502. *Ione thompsoni* (Richardson) (16 mm)
Range: Massachusetts
The species is found on the mud shrimp *Callianassa stimpsoni.*

6b. Pleon with 6 or less segments; telson or pleotelson always with digitate boarders .. 7

7a. Cephalon without lateral extensions or with lateral extensions much wider than cephalon ... 8

7b. Cephalon with very little, if any, extension beyond lateral margin of oval cephalon (frontal extension present, however) .. *Dactylokepon*
MARINE ISOPOD CRUSTACEANS

Fig. 504. *Dactylokepon hunterae* (Wells and Wells) (6 mm)

Range: Off Core Bank, North Carolina (22 m)

The species is a branchial cavity parasite of the crab *Pinnotheres maculatus* which is associated with the calico scallop. Two specimens were found on the host.

8a. Cephalon narrow, without frontal or lateral extensions

.. *Leidya*

Fig. 505. *Leidya distorta* (Leidy) (8 mm)

Range: New Jersey, North Carolina and Bermuda

The species is found in the branchial cavity of the common fiddler crab, *Uca pugilator*, an abundant species in the salt marshes of the east coast of the United States. In Bermuda the species is parasitic on a different species of crab from a different family, *Pachygropsus transversus*. It thus is an example of a parasitic isopod which has several host species.
MARINE ISOPOD CRUSTACEANS

Fig. 506. Leidya bimini (Pearse) (6.7 mm)
Range: Bimini Island, Bahamas

The species is found in the branchial chamber of Pachygrapsus transversus. It perhaps is really only a different form of L. distorta.

8b. Cephalon with large lateral and frontal extensions on ovate cephalon

Grapsicepon

Fig. 507. Grapsicepon edwardii (Giard and Bonnier) (19 mm)
Range: Gulf Stream and Sargasso Sea

The species is a branchial parasite of crabs. Several males sometimes are found attached to one female. Large medio-dorsal projections are found on peraeonal segments VI and VII.

Figure 506. a. Leidya bimini, anterior part. b. Male.

Figure 507. d. Grapsicepon edwardii. b. Ventral view. c. Male.

(a) H. irritans Baume, Florida & Belize (host: M. irregula)

(b) M. laterale Richardson, Philippines & Java Sea.

(host: ?)
Fig. 508. *Grapsicepon choprae* (Nierstrasz and Brender) (4 mm)
Range: Curacao, Dutch West Indies

9a. Pleonal terga produced into long pleural lamellae (Fig. 509a) .. 10

9b. Pleonal targa short, not produced into pleural lamellae (Fig. 509b) ... 14

10a. Dorsal processes present near lateral borders of all peraeonal segments; uropods bifurcate *Munidon*

(1) Fig. 510. *Munidion parvum* (Richardson) (9 mm)
Range: Puget Sound, Washington and Departure Bay, British Columbia

The species is a parasite on the galatheid crab *Munida quadrispina*.

2. *M. pleuracodis* Markham. British Columbia to Baja (host: *P. conspersa* plumipes).
3. *M. cubense* Bourdon (formerly *M. parvum cubensis*) Caribbean (hosts: *Munida stimpsoni* & *M. flinti*)
22b. Pleotelson with rounded appendages \(P. \) panopei

![Diagram of Pseudione panopei](image)

Fig. 525. \textit{Pseudione panopei} (Pearse) (13.5 mm)
Range: Beaufort, North Carolina

The species is parasitic on the crab \textit{Panopeus herbstei}.

23a. Pleon with five complete, free segments showing; mostly blind species .. 24

23b. Pleon never with five complete, free segments showing; mostly species with eyes 26

24a. Pleon much narrower than peraeon, at least on short body side; posterior margin of pleotelson slit medially ... \textit{Palaegyge}

![Diagram of Palaegyge meeki](image)

Fig. 526. \textit{Palaegyge meeki} (Richardson) (9 mm)
Range: Freshwater streams on Atlantic coast of Panama

The species is a branchial parasite on the young of shrimps. The uropods of this species are in the form of two oval sac-like structures.
24b. Body margins of peraeon gradually tapering into that of pleon (no abrupt change on either side); pleotelson with posterior margin various, but never slit

25a. Peraeon smooth without distinct dorsal differentiation of any kind; posterior margin of pleon and pleotelson truncate

Bopyroides

Fig. 527. Bopyroides hippolytes (Kroyer) (8 mm)
Range: Circumpolar, south to Cape Cod and to Puget Sound, Washington
There have been many different forms described for this widespread species that is parasitic on species of the genera Pandalus, Pandalopsis and Spirontocaris.

Probopyrus

It is very difficult to tell the six species of the genus apart without knowledge of the host and of the structure of the male. The species are parasites of shrimp.

Fig. 528. Probopyrus alphei (Richardson)
Range: North Carolina to Brazil

The host species is the snapping shrimp Alpheus heterochaelis

GENUS PROBOPYRUS

Fig. 528. a. Probopyrus alphei. b. Male.
Figs. 529 and 530. Probopyrus pandalicola (Packard) (10 mm)
Range: New Hampshire to Florida and Mississippi

The species is parasitic on the shrimp of the genus *Palaemonetes* on the east and gulf coasts of the United States.

Fig. 531. *Probopyrus oviformis* (Nierstrasz and Brender) (2.5 mm)
Range: Jolly Hill, St. Croix, West Indies

The species is parasitic on the shrimp of small brooks of the genus *Macrobrachium*.
Fig. 532. *Probopyrus panamensis* (Richardson) (12 mm)

Range: Canal Zone, Panama

The species is a branchial parasite of the shrimp *Macrobrachium acanthurus*.

Fig. 533. *Probopyrus floridensis* (Richardson) (4 mm)

Range: Northern Florida

The shrimp *Palaeomonetes exilipes* is the host of the species.

Fig. 534(a). *Probopyrus bithynis* (Richardson) (3 mm)

Range: Mississippi River to Nicaragua

Shrimp of the genus *Macrobrachium* are the hosts.

26a. Cephalon and peraeonal segment I fused or cephalon and peraeonal segments I and II fused 27

26b. Cephalon never fused with peraeonal segment I and II ... 29

27a. Cephalon and peraeonal segment I fused *Bopyrella*
Fig. 534(b). *Bopyrella harmopleon* (Bowman) (4.8 mm)

Range: Los Roques Islands, Venezuela

The species is a parasite of a shrimp of the genus *Synalpheus*.

Fig. 534(c). *Bopyrella maginitiei* Shiino (5.7 mm)

Range: Santa Cruz Island, California (13 m)

The species is a branchial cavity parasite of the shrimp *Crangon equidactylus*.

27b. Cephalon and peraeonal segments I and II fused

28a. Eyes present; pleonal segments I and II at least, free; lateral margins of pleonal segments pointed

Synsynella
Fig. 535. Synsynella deformans (Hay) (3.1 mm)

Range: Onslow Bay, North Carolina, (20 miles off Beaufort Inlet) (18 m)

The species is found in the gill chambers of Synalpheus longicarpus, a shrimp. Hemiarthrus subcaudalis (p. 313) is also a parasite on the shrimp.

28b. Blind; no free pleonal segments; lateral margins of pleonal segments not pointed

Bopyrinella

Fig. 536. Bopyrinella antillensis (Nierstrasz and Brender) (3 mm)

Range: Curacao, Dutch West Indies

The host shrimp is Thor floridanus which is also the host of Bopyrina thorii in Florida (p. 335).

29a. Three or four free pleonal segments; pleotelson various

29b. All peraeonal segments fused, but generally indicated laterally (on one side or ventral view if not indicated on both sides in dorsal view); pleotelson never dorsally indicated (i.e., pleotelson equals pleon)

Bopyrina

GENUS BOPYRINA

The six species of the genus are found on five different shrimp genera. Two species are found on the same host from different geographic regions.
KEY TO SPECIES OF BOPYRINA

30a. Pleon with indications of segmentation on one lateral margin only ... 31

30b. Pleon with indications of segmentation of both lateral margins .. 32

31a. Body asymmetrical, but medial axis almost straight ... B. crangona

Fig. 537. *Bopyrina crangona* (Pearse) (5.5 mm)

Range: Coast of Carolinas (Shallow water)

The host shrimp is *Crangon formosa*.

31b. Body asymmetrical with curved medial axis B. abbreviata

Fig. 538. *Bopyrina abbreviata* (Richardson) (2 mm)

Range: Puntarasa, Florida

The host shrimp is *Hippolyte zostericola*.
32a. First incubatory oostegite with hook on posterior margin (Fig. 542b) 33

32b. First incubatory oostegite with rounded posterior margin (Fig. 538c) 35

33a. Peraeonal segment I deeply set into peraeonal segment II

B. thorii

Fig. 539. Bopyrina thorii (Richardson) (3.2 mm)

Range: Key West, Florida

The host is Thor floridanus the same as for the species Bopyrinella antillensis (p. 333)

33b. Peraeonal segment I not deeply set into peraeonal segment II

B. latreuticola

Fig. 540. Bopyrina latreuticola (Gissler) (1.7 mm)

Range: Carolinas, Bermuda and Bahamas

Host animal for the species is Latreutes ensiferus. The species formerly was considered to be a member of Probopyrus, but because of the presence of eyes, the size, the fused pleon and the general body of configuration, it is included here in Bopyrina.

34a. Borders of pleonal segments angulate; frontal margin of cephalon not greatly curved

B. pontoniae
Fig. 541. *Bopyrina pontoniae* (Wells and Wells) (6 mm)

Range: Off Core Bank, North Carolina (22 m)

The host is the shrimp *Pontonia margarita* and it was associated with callico scallop. *B. urocardis* was found on the same host in Florida.

34b. Borders of pleonal segments sinuate; frontal margin of cephalon greatly curved

B. urocardis

Fig. 542. *Bopyrina urocardis* (Richardson) (2.1 mm)

Range: Puntarasa, Florida

The host shrimp is *Pontonia margarita* the same as for *B. pontoniae* from North Carolina.

35a. Four free pleonal segments; fifth indicated in lateral margins of pleotelson by indentations

Bopyriscus

Fig. 543. *Bopyriscus calmani* (Richardson) (5 mm)

Range: Southern California

Host unknown.
35b. Three free pleonal segments; fourth laterally indicated by slits in pleotelson margin \(Bopyro \)

Fig. 544. *Bopyro choprae* (Pearse) (6.2 mm)

Range: North Carolina to Bahamas

CRYPTONISCIDAE

The species of the family are among the least known members of the isopod fauna of North American waters, because the female is composed of little more than just an egg sac and the males have rarely been found. It is known, however, that the species are isopods (for some species there is even a legitimate doubt of that!) because the juvenile stage looks like that of the juvenile of other species of bopyrids. Apparently the juveniles are at first planktonic and fend for themselves soon after being released from the brood sac. They soon must attach to a host, and most of the early attachment stages have never been seen by scientists because they are small and easily overlooked. The life history of no species has ever been completely explored and explained.

Most appendages including the mouth parts are absent, and the appendages which remain are greatly modified as suctorial or clinging structures. The females are composed mainly of ovarian tissue, and of eggs formed from ovarian tissue. Sometimes some sign of segmentation is found, but most frequently the form of the adult female is simply rotund or lobular, and there is only a general pattern to the body form of the various species. The details of the form depend upon the place and conditions of attachment.
to the host. The males are like the males of other families of the suborder, but unfortunately they have never been extensively illustrated even when found. The isopods are probably frequently overlooked, even as adults, because they are small and look like many of the other encrusting plants and animals found on the host.

![Image of Clyptoniscus meinerti](https://via.placeholder.com/150)

Figure 545. Clyptoniscus meinerti, lateral view larva.

There is some evidence that species of the family are host specific, but there are not enough observations to form any solid conclusions. The approximately 25 genera of the family have been divided into seven separate families, but since little other than the juvenile stage is known in most species, they are included here as one family. Members of the family are parasites on many other groups of crustaceans including other isopods. Occasionally they are parasites of crustaceans which are in turn parasites of other crustaceans or other animals. Probably they have some influence on the life history of their hosts, but not as much as that of the entoniscids. Six species in six genera have been recorded in North American waters. The key to genera which follows is only an aid, not the final word since the form of the animals is so changeable.

KEY TO GENERA AND SPECIES OF CRYPTONISCIDAE

1a. Specimen rolled into ball; much longer than wide *Danalia*
Fig. 546. *Danalia fraissei* (Nierstrasz and Brender) (4.4 mm)

Range: Curacao, Dutch West Indies. The host of the parasite is the

1b. Not as above .. 2

2a. Species of two large lobes; peraeonal segments showing between two lobular egg masses *Clypeoniscus*

Fig. 547. *Clypeoniscus meinerti* (Giard and Bonnier) (2 mm)

Range: Greenland (11 to 18 m)

The species illustrated here is a parasite in the marsupium of another isopod, *Synidotea nodulosa* (p. 70), which is a relatively small isopod about 7.5 mm long. The host is found in the intertidal zone on the coast of Greenland. The species looks like a large egg in the marsupium of the female. Upon close examination it is found to be a sac of tiny eggs itself. A male is sometimes found attached to the egg mass and it looks much like other bopyrid isopod males.
2b. Specimen not of only two lobes of egg masses; peraeonal segmen­tation not apparent 3

3a. Seven lobes apparent; five lobes somewhat radially arranged

Heptalobus

Fig. 548. Heptalobus paradoxus (Nierstrasz and Brender) (4 mm)

Range: Bering Sea (730 m)

The host was Spirontocaris binguis. The ring structure apparently represents the oral region. No males were found.

Figure 548. a. Heptalobus paradoxus, oral view. b. Aboral view. c. Detail, oral region.

3b. Bean-shaped, ocarina-shaped or composed of two subspherical parts 4

4a. Bean-shaped

Faba

Fig. 549. Faba setosa (Nierstrasz and Brender) (8 mm)

Range: Off central California (305 m)

The species was found on the shrimp Spirontocaris bispinosa. A second species of the genus is found in Hawaii. The male has never been seen. Apparently the species attaches to the host by means of the four pointed anterior (?) processes.

Figure 549. a. Faba setosa, lateral view. b. Attachment stalk. c. Detail, attachment stalk. d. Opposite view of a.

Faba glabra - Hawaii

Cryptothir balani (Bate 1860)

(- Hemiprinus balani)
4b. Ocarina-shaped or composed of two subspherical parts .. 5
5a. Ocarina-shaped .. Duplorbis

Fig. 550(a). *Duplorbis ocarina* (Nierstrasz and Brender) (4 mm)

Range: Aleutian Islands (132 m)

The parasite shaped like the musical instrument, the ocarina, is from the branchial cavity of a crab. A cross section [A to B, Fig. 505(a)] of the animal is shown with the small intestine indicated. The large cavity of the ovary is surrounded by ovarian tissue.

5b. Body composed of two subspherical parts ... Liriopsis

Fig. 550(b). *Liriopsis pygmaea* (Rathkei) (5 mm)

Range Puget Sound, Washington (Shallow water)

The species is parasitic on the rhizocephalans *Peltogaster paguri* and *P. gas*+erella gracilis which in turn are parasitic on hermit crabs.

DAJIDAE

The body of the female is composed mostly of a mass of eggs that is sometimes symmetrically arranged around a segmented body. The mouth, even in the young female stages, is composed of an attachment sucker. The sucker is not found in mature males, but whether or not it is present in larval males has not been determined. The antennae are severely reduced in size or absent, and only two to five pair of anterior peraeopods are present. The pleo-
pods, if present, are rudimentary, and the uropods are absent or very small if present. The males are much like those of other families, but in some species the cephalon and peraeonal segment I are fused. The pleonal segments are also fused. The species are parasites on species of Mysidacea and Euphausiacea. Four species in four genera are known from North American waters.

KEY TO GENERA AND SPECIES OF DAJIDAE

1a. Peraeonal segmentation visible in dorsal view; body flanked laterally by large egg masses .. 2

1b. Peraeonal segmentation not at once apparent if at all; egg cases laterally placed on each side of body 3

2a. Uropods distinct; body bilaterally symmetrical with anterior parts greatly wider than posterior part; two large egg masses laterally placed in gravid females *Dajus*

Fig. 551. *Dajus mysidis* (Kroyer) (4 mm)

Range: Laborador and Greenland (5 to 37 mm)

The species is a parasite which attaches to the abdomen of mysid shrimps.

2b. Uropods not distinct; body with somewhat of a symmetry

Colophryxus

Fig. 552. *Colophryxus novangliae* (Richardson)
Range: South of Long Island, New York (1293 m)

This species is the type and only species in the genus. It was found unattached in a fishing trawl net, therefore, the host is not known.

3a. Pleon with segmentation apparent; anterior peraeonal segments distinct

Prophryxus

Figs. 553 and 554. *Prophryxus alascensis* Richardson 1909
Range: Off Alaskan panhandle (3658 m)

This species is perhaps parasitic on a schizopod since one was caught with it. The name of the schizopod was not given.
3b. No major body segmentation apparent.......Holophryxus

Fig. 535. Holophryxus alascensis (Richardson)
Range: Alaska, near Juneau (269 to 640 m)
The host for this species is an unnamed stomatopod.

ENTONISCIDAE

Species of entoniscids are true endoparasites and are found within the body cavity of their decapod hosts. Although at first the specimens appear to be a mass of undifferentiated host tissue, it is interesting to note that all the body tagmata are present and almost all of the segments of each tagmata are represented. It is only after careful study, however, that they can be properly identified. The cephalon is generally composed of two large cephalic lobes and the pleon is long and slender. Large lamellae are present on the peraeonal segments of many species. All appendages are
rudimentary or absent, and only the mandibles are recognizable of the mouth parts. The pereaeopods are present as buds or completely absent, and there are five segments plus a pleotelson present and distinct and the segments are sometimes equipped with pleopods that are long and pointed. Gravid females appear to be simply an undifferentiated mass of eggs, and only after careful examination is the body of an isopod recognized. The males are found on the body of the non-gravid female or in the egg mass of the gravid female. Their body is generally wide at the anterior end and tapers to a thin pleon, but it is in almost every other respect like that of other bopyrid males.

There is a small hole in the body wall of the host leading from the branchial cavity to the body cavity (haemocoel) where the parasite is found. In at least one species, the hole regularly penetrates from the eye cavity to the body cavity. The parasite is bathed in the body fluid of its host, and this is one of the criteria for calling the isopod a true endoparasite. There are about 34 species known and four are from the Atlantic coast and one from the Pacific coast of North America.

It is not easy to make a useful key to the genera or species of entoniscids so one is not attempted here. When decapods that are parasitized by the isopods are collected, they should be preserved and identified as well as the parasite. The structure of the male also is a useful identifying character. The species of entoniscids are economically important. Five species in four genera are found in North American waters.

GENERAE OF THE FAMILY ENTONISCIDAE

Fig. 557. *Cancrion carolinus*
(Pearse and Walker)
(24 mm)

Range: Coast of Carolinas

At Beaufort, North Carolina, the species was found in the crab *Panopeus herbstii*.

Figure 556. Larva of entoniscid.

Figure 557. a. *Cancrion carolinus*. b. Male.
Fig. 558. Cancrion needleri (Pearse and Walker) (18 mm)
Range: Prince Edward Island, Canada
The host crab is Neopanope texana.

Fig. 559. Paguritherium altum (Reinhard) (15 mm)
Range: Woods Hole, Massachusetts
The species is parasitic on the hermit crab Pagurus longicarpus, and it enters the body cavity through the region of the eyestalk, not the branchial cavity as in other entoniscids. In the male the peraeopods are stumps, not jointed peraeopods. The crab host is also host of another bopyrid isopod, Stegophryxus hyptius, a branchial cavity parasite (p. 321)

Fig. 560. Achelion occidentalis (Hartnoll) (4.8 mm)
Range: Jamaica
The parasite is found in the spider crabs Microphryus bicornutus and Stenorhynchus seticornis.
Fig. 561. Portunion conformis (Muscatine) (14 mm)

Range: Puget Sound, Washington to San Francisco Bay, California

The host is Hemigrapus oregonensis, a decapod. More than one parasite is frequently found on each host.

also H. nudus (see P. Hz, 1949)

Figure 561. a. Portunion conformis. b. Male.

SOME USEFUL REFERENCES

This is a well illustrated account of the Bopyridae.

An excellent study of the ecology of a single species. More work should be done in this manner.

A good account of the isopods and related tanaids of the southern British Columbia, Washington and Oregon region.

A complete account of the economically important family of wood boring isopods.

A study of the deep sea isopods off the coast of North America.
10b. Dorsal processes absent near lateral borders of peraeonal segments; uropods uniramus

11a. Cephalon rounded and protruding far out of surrounding peraeonal segment I

Cryptione

Fig. 511. *Cryptione elongata* (Hansen) (19 mm)

Range: Galapagos Islands and perhaps west coast of Mexico
Neither the male nor the female have eyes. The species is found in the branchial cavity of the crabs of the genus *Nematocarcinus*.

11b. Cephalon broadly rounded or with frontal margin nearly straight and contained almost or completely within peraeonal segment I .. 12

12a. Some or all pleopods triramus; no papillae dorsolaterally placed on pleonal segment I .. 13

12b. No pleopods triramus; papillae dorsolaterally placed on pleonal segment I .. *Phyllodurus*

Fig. 512. *Phyllodurus abdominalis* (Stimpson) (14 mm)

Range: Puget Sound, Washington to San Francisco Bay, California

The species is parasitic on the crab *Upogebia pugettensis*.

13a. All pleopods triramus *Stegophryxus*

Fig. 513. *Stegophryxus hyptius* (Thompson) (9.1 mm)

Range: Massachusetts and Rhode Island & Georgia.

The species is a parasite on the abdomen of the hermit crab, *Pegurus longicarpus* which is found on the shore and in shallow water. The crab is also host of another isopod of the family Entoniscidae, *Paguruitherium altum* (p. 346), an endoparasite. *Also infests* *P. annulipes* in North Carolina & Georgia, and *P. bonairiense* & *P. miamensis* in Florida.

Stegophryxus hyphalus: So. Calif. to Baja

See Markham, 1974 for review of genus.
13b. Only anterior three pleopods triramus \textit{Stegias}

Figs. 514 and 515. \textit{Stegias clibanarii} (Richardson) (16 mm)
Range: Bermuda
The host species is \textit{Clibanarius tricolor}.
14a. Pleopods very long; pleonal lateral edges usually moderately long; telson or pleotelson with long rami

14b. Pleopods short, rudimentary or absent; pleonal lateral edges short; telson or pleotelson never with distinct rami

15a. Peraeonal segments I to III with secondarily produced posterolateral edges at least on long body side, and secondarily produced posterolateral edges on both edges of segments IV to VII; pleonal segments with lateral margins rounded

Figs. 516 and 517. Argeia pugettensis (Dana) (14 mm)
Range: Bering Sea to southern California
At times half a population of shrimp have been recorded to have the parasite in their branchial chamber. Shrimp of the family Cragonidae are the hosts. Argeia pauperata Stimpson (14 mm) from San Francisco Bay and parasitic on Crago franciscorum has been considered to be a separate species although it is very similar to A. pugettensis.
15b. Not as above

16a. Pleonal segments with lateral edges short and lateral margins square

Parageia

Fig. 518. Parageia ornata (Hansen) (7 mm)

Range: Acapulco, Mexico

The species is parasitic on the shrimp Sclerocrangon procax.

16b. Pleonal segments with lateral edges moderately long and lateral margins various (for example, square, lobular, secondarily produced, etc.)

Pseudione
GENUS PSEUDIONE

The genus contains species that are parasitic on crabs and shrimp. The species constitute one of the most widespread groups of parasitic isopods, and when they are more closely examined they will probably be separated into several genera. They are most commonly encountered in the branchial cavity of hermit crabs, but they are occasionally found in shrimps.

KEY TO SPECIES OF PSEUDIONE

17a. With eyes; cephalon ovate .. P. trilobata

Fig. 519. *Pseudione trilobata*
(Nierstrasz and Brender)
(3 mm)

Range: Curacao, Dutch West Indies

17b. Blind; cephalon not ovate 18

18a. Pleopods digitate .. P. upogebiae

Fig. 520. *Pseudione upogebiae*
(Hay) (1½ mm)

Range: Beaufort, North Carolina

The species is a parasite of the gill chambers of the shrimp *Upogebia affinis*. The distinct digitate pleopods distinguish the species from other species in the genus. When more observations are made, the peculiar pleopods might serve as criteria for establishing a new genus.

Markham (1974) placed *Phyllodurus robustus* into junior synonymy with *Pseudione upogebiae*.
18b. Pleopods not digitate .. 19
19a. Posterior part of body abruptly narrower than anterior part; pleonal secondary lamellae not distinct *P. giardi*

Fig. 521. *Pseudione giardi* (Calman) (12 mm)
Range: Puget Sound, Washington
The species is parasitic on the hermit crab *Pagurus ochotensis*.

19b. Posterior part of body narrower, but not abruptly narrower, than anterior half; pleonal secondary lamellae various 20
20a. Pleonal terga produced to narrow secondary lappets *P. curtata*

Fig. 522. *Pseudione curtata* (Richardson) (5.5 mm)
Range: Key West, Florida

Only one specimen of the species was taken from the branchial cavity of the crab *Petrolisthes sexspinous*.
20b. Pleonal terga not produced or produced into large secondary lamellae

21a. Pleonal terga not produced into large lamellae

21b. Pleonal terga produced into large secondary lamellae

\[P.\text{galacanthae} \]

Fig. 523. \textit{Pseudione galacanthae} (Hansen)

(11 mm)

Range: Gulf of California to Washington State

The species was found in the branchial cavity of the galatheid crab \textit{Munnida quadrispina}.

22a. Pleotelson with elongate appendages \[P.\text{furcata} \]

Fig. 524. \textit{Pseudione furcata} (Richardson) (11 mm)

Range: Virginia

Host unknown.

An account of isopods collected in a small region on the Atlantic coast with good figures of the species.

Unfortunately the author did not see this reference in time to incorporate it into the text. There are 44 species described—14 are new species and three are in new genera.

The summary of all knowledge on the gnathiids until 1926.

The two references to the work of Richardson contain a very good general account of the biology of isopods.

It is essentially this monograph plus the added work from its publication until the present that forms the basis of this book.

The latest, most comprehensive study of all Asellota.
INDEX AND PICTURED-GLOSSARY

A
Abdomen: see pleon
Abysianira
dentifrons, 249
Abysijaera
acarina, 256
Acanthocope
spinosissima, 303
Acanthomunna
tannerensis, 300
Accalathura
crassa, 96
crenulata, 96
Achelion
occidentalis, 346
Aega
antillensis, 190
arctica, 193
crenulata, 195
dentata, 194
ecarinata, 195
gracilipes, 194
incisa, 192
lacontii, 196
microphthalmalma, 189
psora, 190
symmetrica, 193
tenueps, 191
ventrosa, 191
webbii, 196
Aegathoa
linguifrons, 149
medialis, 149
oculata, 148
Aegidae, 188
Aesthetases: specialized sensory
(probably chemical) setae of anten
tenna one, 35, 36
Agarna
carinata, 147, 158
Alcirona
hirsuta, 214
krebsii, 213
Algal-boring isopod, 140
Ambulatory: walking structures,
usually legs—see peraeopods
Amphipoda, 4
Analthura
abyssorum, 101
affinis, 101
sulcaticauda, 100
Ancinus
depressus, 114
granulosus, 115
Andromorphosis: development of
male stage then female stage, 146
Anilocra
acuta, 154
laticauda, 153
plebia, 153
Antarcturus
annaoides, 55
floridanus, 55
ANTENNAL SCALE, 35, Fig. 562

Figure 562. Antennal scale (Antenna two).

Antennuloniscus
dimeroceras, 271
Anhelura
truncata, 102
Antias
hirsutus, 249
Antiasidae, 248
Anthuridae, 85
Anthuridea (suborder) General
nomenclature, 86
Maxillipeds, 87
Peraeopod types, 95
Pleon types, 91
Pleopod one types, 92
Telson types, 95
Antrolana
lira, 187
Anuropidae, 137
Anuropus
bathypelagicus, 138
Apanthura
californiensis, 99
magnifica, 99
APICAL SPIKE: small extension of
peduncle of antenna two Fig. 563
Aporobopyrus muguensis, 315
Appendage: mouth part, antenna, peraeopod or pleopod
Appendix masculina: see male pleopod 2 Fig. 567
Apsidoniscus perplexus, 270
Arcturidae, 50
Arcturus
baffini, 58
beringanus, 57
caribbaeus, 58
glaber, 57
longispinus, 57
purpureus, 58
Archetype isopod, 7
Argeia pauperata, 323
pugettensis, 323
Arthropoda, 1
Article: segment of flagella of antennae and mandibular palp
Astellidae: family of isopods which are found in freshwater habitats (only Asellus sp. is included here as an example, 241)
Aselloidea (superfamily), 230
Asellidae: family of isopods which are found in freshwater habitats (only Asellus sp. is included here as an example, 241)
Asellota (suborder), 229
General nomenclature, 230
Antennal one types, 231
Maxillipeds, 233, 250
Peraeopods, 232
Asellus sp., 242
Astacilla caeca, 51
grandulata, 51
lauffi, 51
Austrosignum tillerae, 292
B Basis (pl. bases): segment closet to body except where coxal segment is present
Bathura luna, 98
Bathygnathia curvirostris, 221
Bathygyge grandis, 312
Bathynomus giganteus, 169
Benthic: bottom dwelling animal
Bopyrella maginitiei, 332
harmopleon, 332
Bopyridae, 312
Bopyrina abbreviata, 334
cragona, 334
latreuticola, 335
pontoniae, 336
thorii, 335
urocaridis, 336
Bopyrinella antillensis, 333
Bopyriscus calmani, 336
Bopyro chropae, 337
Bopyroides hippolytes, 329
Boss: an enlargement; a large tubercle
Braga cichlae, 154
occidentalis, 155
Branchial chamber: gill cavity in decapods (where parasitic isopods are sometimes found); pleopodal cavity in Asellota (230) and Valvifera (48)
Caecianiropsis psammophila, 257
Caecijaera horvathi, 257
Calathura branchiata, 102
Cancrion carolinus, 345
needleri, 346
Carcinology: study of crustaceans
Carpias bermudensis, 260
Carpus: peraeopodal segment (5), 32
Cassidinidea lunifrons, 115
ovalis, 115
Cephalization: process of formation through evolution of anterior appendages to sensory and gna-
thall from locomotoral ones, Fig. 3
Cephalon: head—anterior most tagma
where gnathal and sensory appendages are located
Cerathothoa
impressa, 155
Chelate: clawed
Chelifer: see Tanaidacea, 4
Chiridotae
almyra, 61
arenicola, 62
coea, 62
nigrescens, 62
stenops, 61
tufsi, 61
Cirolana
albida, 180
borealis, 182
californiensis, 178
concharum, 181
diminuta, 184
gracilis, 185
harfordi, 183
impressa, 184
joanneae, 179
minuta, 180
obtruncata, 181
parva, 185
polita, 183
sphaeromiformis, 178
Cirolanidae, 168
Cirolanides
texensis, 186
Cleantis
heathii, 82
occidentalis, 83
planaudata, 82
Clypeoniscus
meinerti, 338, 339
Clypeus: front of cephalon above labrum, 37, 75
Colanthura
squamossima, 90
tenuis, 89
Colidotea
rostrata, 74
Collecting methods, 21, places, 20
Colophrinus
ovangliae, 343
Colopisthus
parvus, 168
Conilera
cylindracea, 174
stygia, 174
Corallanidae, 212
COUPLING HOOKS: structures
found on medial edge of maxilliped (p. 38) and pleopods (Fig. 564)
which apparently fastens them together

Figure 564. Pleopod with coupling hooks on basis.

Coxa: peraeopodal segment, (1), 32
Coxal plate: see epimere
Craneseria
anops, 187
Cryptocline
elongata, 320
Cryptoniscan larvae or stage, 309
Cryptonicidae, 337
Culture (or rearing), 23
Cumacea, 4
Cyathura
burbanki, 107
carinata, 107
cruis, 105
Curassavica, 104
munda, 105
polita, 106
specus, 104
Cymodoce
faxonii, 127
japonica, 127
Cymothoa
caraibica, 160
excisa, 346, 160
exigua, 161
oestrum, 161
Cymothoidea, 145
Mouth parts, 146

D
Dactylus: peraeopodal segment, (7) with claw, 32
Dactylokepon
hunthae, 317
Danalia
fraissei, 339
Dajidae, 341
Dajus
mysidis, 342
Decapods: crabs and shrimps
Dendrotron
hanseni, 300
Dendrotronidae, 299
Desmosoma
armatum, 281
birsteini, 279
lobiceps, 280
plebium, 280
symmetrica, 279
tenuimanum, 281
Desmosomatidae, 278
Development, 24
Digitate: finger-like; branched
Diplophryxus
synalphei, 314
Discercis
granulosa, 126
linguicauda, 126
Distribution, 14 (Map, Fig. 13)
Dorsal pit, 86
Dorsolateral keel, groove, 86
Dorsum: upper surface of body or
tagmata of body
Duplorbis
ocarina, 341
Dynamene
dilatata, 122
Dynamenella
angulata, 125
benedicti, 125
glabra, 122
moorei, 124
perforata, 124
sheareri, 123
Dynameniscus
carinatus, 118
Dynamenopsis
dianae, 123

E

Echinothambema
ophiuroides, 248
Echinothambematidae, 247
Ecology, general, 9
Economic importance of isopods, 9
Limnoria, 138
Sphaeroma destructor, 128
Sphaeroma pentadon, 128
Edanthura linearis: this species from
California was not described in
sufficient detail to be recognized
again, hence, it is a nomen nun-
dem
Edotea
acuta, 81
montosa, 80
sublittoralis, 81
triloba, 81
Eisothistos
atlanticus, 97
Endopod: inner branch of appendage
Entoniidae, 344
Epicaridea (suborder), 309
General nomenclature, 309
Epicaridian larva, 309

EPIMERE: modified coxal segment
of pleopod sometimes forming
extension of peraeon, Fig. 565

Erichsonella
attenuata, 84
crenulata, 85
filiformis, 84
floridana, 84
pseudoculata, 85
Erygna
rissoi, 315
Eucarida, 5
Eurycope
californiensis, 305
complanata, 305
cornuta, 304
mutica, 304
Eurycopeidae, 302
Eurydice
branchuropus, 173
caudata, 173
convexa, 172
littoralis, 171
piperata, 172
spinigera, 171
Eusymmerus
antennatus, 83
Excirrolana
chiltoni, 175
kincaidi, 175
linguifrons, 174
mayana, 174
vancouverensis, 175
Excorollana
antilliensis, 211
berbicensis, 206
fissicauda, 208
kathae, 209
mexicana, 209
oculata, 207
quadricornis, 210
rapax, 211
sexticornis, 210
subtilis, 206
tricornis, 210
truncata, 208
warmingii, 207
Excorallanidae, 205
Exopod: outer branch of appendage
Exosphaeroma
amplicauda, 131
antillense, 134
crenulatum, 132
diminutum, 136
dugesi, 134
inornata, 133
media, 133
octoncum, 135
papillae, 132
rhomburum, 135
thermoburum, 135

F
Faba
setosa, 340
Flabellifera (suborder), 109
General nomenclature, 110
Maxillipeds, 111, 177
Flagellum (pl. flagella): distal small segments of antennae, 35
Fossorial: modified for digging or burrowing
Frontal lamina: protuberance ventral on cephalon usually between antennae, Fig. 566

Figure 566. Frontal lamina between antennae (ventral view). a. Eurydice-like. b. Antennuloniscus.

Frontal plate: see frontal lamina

G
General Nomenclature, 7
Geniculate: bent like a knee

Gnathal: having to do with jaw or mouth
Gnathia
cerina, 226
clementensis, 223
coronadensis, 222
crenulatifrons, 224
cristata, 225
dorsata, 230
everta, 225
hiruta, 225
multispinata, 224
productatridens, 228
serrata, 222
steveni, 227
tripathonia, 223
tridenta, 229
trilobata, 227
Gnathiidae, 217
Gnathiidea (suborder), 217
General nomenclature, 218
Female, 25, 226
Juvenile, 220
Gnathopod: peraeopod modified for eating or food gathering (usually peraeopod 1)
Gnorimosphaeroma
insularis, 130
lutea, 130
nobeli, 131
oregonensis, 129
Grapsicepon
choprae, 319
edwardii, 318
Gravid: with eggs or offspring in marsupium

H
Habitats, 16, 20 (Figs 14, 15, 16)
Haliophasma
geminata, 103
Haplomesus
quadrispinatus, 247
tropicalis, 247
Haploniscus
caeca, 242
Haploniscidae, 270
Haploniscus
excisus, 272
retrospinus, 273
tropicalis, 273
unicornis, 272
Haptolana
trichostoma, 186
Head: see cephalon
Hemirathus
abdominalis, 313
schmitti, 314
subcaudalis, 313
Heptalobus
paradoxus, 340
Heteromesus
 bifurcatus, 246
 granulatus, 246
 spinescens, 245
Holophryxus
 alascensis, 344
Horolanthura
 irpex, 93
Hydroniscus
 abyssi, 274
 quadrifrons, 274
Hyppopharynx: sensory structure just behind mandibles, 38
Hyssura
 producta, 93
 profunda, 93
Iais
 californica, 269
Ianirella
 caribbica, 256
 lobata, 255
 vemae, 255
Ianiropsis
 analoga, 261
 epilittoralis, 262
 kincaidi, 264
 magnocola, 263
 minuta, 264
 montereyensis, 263
 tridens, 262
Idarcturus
 allelomorphus, 53
 hedgpethi, 54
Identification and observation procedures, 26
Idotea (Idothea, old spelling)
 baltica, 77
 fewkesi, 76
 gracillina, 80
 metallica, 78
 ochotensis, 77
 phosphorea, 76
 rectilinea, 79
 rufescens, 78
 urotoma, 79
Idoteidae, 58
Illustrations and scale, 45
Ilyarachna
 acarina, 301
 hirticeps, 302
 profunda, 301
Ilyarachnidae, 300
Iloella
 glabra, 253
 libbeyi, 252
 speciosa, 251
 spinosa, 252
Ione
 brevicauda, 316
 cornuta, 316
 thompsoni, 316
Incisor process: cutting structure of mandible, 37
Incubatory lamellae: see oostegites
Incubatory pouch: see marsupium
Indurate: hard, stiff or thick
Indusa
 carinata, 159
Inner antenna: antenna one
Iriona: see Mothocya, 162
Ischiium: peraeonal segment (3), 32
Ischnomesidae, 243
Ischnomesus
 armatus, 383
 caribbicus, 244
 profundus, 243
 multispinis, 245
Jaera
 marina, 269
 wakishiana, 269
Jaeropsidae, 284
Jaeropsis
 concava, 286
 coralicola, 285
 dubia, 287
 lobata, 285
 rathbunae, 286
 setosa, 287
Janira
 alta, 260
 maculosa, 259
 minuta, 258
 tricornis, 259
Janiralata
 alascensis, 268
 erostrata, 268
 holmsei, 268
 occidentalis, 266
 rajata, 265
 sarsi, 266
 solasteri, 267
 triangulata, 267
Janiridea, 250
Key to—
 Isopod suborders, 47
 Anthuridea, 89
 Asellota, 233
 Epicaridea, 310
 Flagellifera, 111
 Gnathiidea, 221
 Microcerberidea, 214
 Valvifera, 49
INDEX

L
Labeling of specimens, 30
Labium: posterior lip—see hypopharynx
Labrum: anterior lip below clypeus, 37, 75
Lacinia mobilis: articulate structure near incisor process of mandible, 37
Lappet, lateral: produced extensions of peraeonal segment (or cephalon, or pleon)—e.g., Asellota
Largest isopod, 169
Leidya
bimini, 318
distorta, 317
Leptanthurra
tenuis, 96
thori, 96
Limnoria
algarum, 140
lingnorum, 145
pfefferi, 144
platycaudata, 143
quadripunctata, 143
saseboensis, 144
simulata, 142
tripunctata, 142
Limnoridae, 138
Liriopsis
pygmaea, 341
Lironeca (Livoneca, old spelling)
californica, 166
convexa, 167
ovalis, 164
panamaensis, 167
redmannii, 163
reniformis, 167
symmetrica, 165
tenuistylis, 164
texana, 166
vulgaris, 165
M
Macrostylidae, 275
Macrostylis
abyssicola, 277
caribicus, 278
galatheae, 275
minutus, 276
setifer, 276
truncatex, 275
vemae, 277
Malacostraca, 3
Male pleopod 2 Fig. 567
MALE STYLET: modified endopod of pleopod 2 male Fig. 567

Figure 567. Male sexual pleopods 2. a. Asellota (Paraselloidea). b. General.

Mandibular palp: small appendage of one, two or three articles coming from mandible—absent oniscoinds and most valviferans
MANUS: hand, usually referring to propodus and dactylus of peraeopod 1, Fig. 568

Figure 568. Peraeopod I, Stenetrium-like.

Marsupium: brood pouch of female where offspring develop, 24
Maxilla one: see mouth parts
Maxilla two: see mouth parts
Maxilliped: General nomenclature, 38
Anthuridea, 115
Asellota, 250, 333
Epicaridea, 309
Flabellifera, 111
Valvifera, 49
Maxillula: maxilla one—see mouth parts
Meinertia
deplanata, 157
gaudichaudii, 157
gilberti, 158
transversa, 156
Membraneous pleopods: fleshy or thin pleopods found in some
sphaeromatids, (4 and 5) Fig. 571

Merus: pleopodal segment (4), 32

Mesanthura
occidentalis, 109
pulchra, 109

Mesidotea: see Saduria, 59

Mesosigidae, 298

Mesosignum
kohleri, 298
usher, 299

Microarcturus
tamerensis, 56

Microcerberidae, 214

Microcerberidea (suborder), 214

Microcerberus
abbotti, 216
littoralis, 217
mexicanus, 215
mirabilis, 216
renaud, 217

Microniscus larva, 309

Microproctus
caecus, 254

Molar process: process variously modified arising from mandible, 37

Morphology, general, 31

Mothocy
ana, 147

MOUTH PARTS
General, 35 and Fig. 569

Asellota, 231

Epicaridea, 309

Flabellifera, 32, 146

Gnathiidea, 348

Valvifera, 49

Figure 569. Mouth parts, 1-6 anterior to posterior. 1. Labrum. 2. Mandible. 3. Hypopharynx. 4. Maxilla one (Maxillula). 5. Maxilla two. 6. Maxilliped.

Munidion
parvum, 319

Munna
chromatocephala, 297
fabricii, 296

fernaldi, 294
halei, 294
kroyeri, 295
magnifica, 296
reynoldsi, 295
spinifrons, 293
stephenseni, 297
truncata, 293
ubiquita, 298

Munidae, 289

Munnogonium
erratum, 289
waldronensis, 290

Munnopsidae, 288

Munnopsis
longiremis, 288
typica, 288

N
Nannoniscidae, 281

Nannoniscus
latipleonus, 282

Nannoniscus
arcticus, 283
camayae, 283
oblongus, 282
primitivus, 283

Natatory: swimming structures—especially pereopods, Fig. 31

Neastacilla
californica, 53

Neoanthura
coeca, 90

Neomunna: see Munna

Nerocila
acuminata, 152
californica, 151
manda, 151
lanceolata, 150

Non-obligate parasite: parasite which does not depend upon its host for completion of its life cycle

O
Ocellus (pl. ocelli): a unit of compound eye; one to many found if present

Olencira
praegustator, 152

Omnivores, 9

Oniscoidea (suborder): isopods which live on land (only mentioned here—p. 2 and Fig. 9)

Oostegite: incubatory lamella—structure arising from pereopod which covers marsupium, 24

Operculate: door-like—covering structure of pleopods or valves

Outer antenna: antenna two

Ovigerous: see gravid
INDEX

Paguritherium altum, 346
Palaegyge meeki, 328
Pananthura formosa, 97
Pancarida, 5
Paracerceis caudata, 119
cordata, 120
gilliana, 121
sculpta, 119
tomentosa, 119
Paradynamese benjamensis, 121
Paralimnoria andrewsi, 139
Paranthura antillensis, 95
elegans, 94
infundibulata, 95
Parargia ornata, 324
Paraselloidea (superfamily), 230
Pleopods, Fig. 366
Parasitic species, Fig. 12
of fish, 160, 190
of other crustaceans, 309
Peduncle: segment or segments which are closest to body; first 5 (or 6) segments of antenna two; first 3 of antenna one
Pelagic: see planktonic
PENIS: sexual structure located on peraeonal segment VII; sometimes of taxonomic value, Fig. 570 (not to be confused with male style-Fig. 567)

Pentidotea aculeata, 73
montereyensis, 72
resecta, 71
schmittii, 72
stenops, 74
wosnesenskii, 73
Peracarida, 4

Peraeon: thorax—body or middle tagma where locomotoral appendages are located, 7
Pereaeopods: legs or locomotoral structures, 32
Phreatoicidea (suborder): isopods found mostly in Southern Hemisphere (only mentioned here—p. 43 and Fig. 9)
Phryxus: see Hemiarthus
Phycolimnoria algarum, 140
Phylloconus abdominatis, 321
Planktonic: living in open water
Pleon: abdomen—posterior most tagma where sexual, respiratory and sometimes natatory appendages are located, 7
PLEOPODS: appendages of pleonal segments except uropods, Fig. 571

Figure 571. Pleopods—Sphaeromatid

Pleotelson: fused telson and one or more posterior pleonal segments, Fig. 572

Figure 572. Fusion of pleonal segments. "T" equals telson. a. General. b. Asellida.
INDEX

Pleurogonium
 californiense, 291
 inerme, 291
 rubicundum, 290
 spinosissimum, 291
Pleuroprion
 intermedium, 52
 murdochi, 52
Portunion
 conformis, 347
Prehensile: modified for grasping—e.g., pereaeopods
Preservation of isopods, 21, 29
Propropodus: pereaeopodal segment (6), 32
Produced: drawn out or extended
Propoxyxus
 alsensus, 343
Protogynous: animal which is first female then becomes male—e.g., anthurids
Psammophil: animal which lives between grains of sand on beach or in cave—e.g., Microcerberus, 214, Caecaniropsis, 257
Pseudione
 curtata, 326
 furcata, 327
 galacanthae, 327
 giardi, 326
 panopei, 328
 trilobata, 325
 urogebiae, 325
Pterisopodus: see Nerocila, 152
Ptilanthura
 tenuis, 108
 tricarina, 108
Pylopod, 39, 348
R
 Rambus: branch—usually endopod or exopod
Rhacura
 pulchra, 253
Rocinela
 americana, 200
 angustata, 205
 aries, 201
 belliceps, 203
 cornuta, 199
 cubensis, 198
 dumerilii, 204
 insularis, 202
 laticauda, 199
 maculata, 202
 oculata, 200
 propodialis, 204
 signata, 201
 tridens, 198
 tuberculosa, 203
Rock-boring isopod, 129
Ronalea: see Erichsonella, 85
Rostrum: medial cephalic anterior pointing projection or process
S
 Saduria
 entomon, 59
 sabini, 59
 sibirica, 58
 Scale of drawings, 45
 Schizopoda: taxon which included Mysidacea and Euphausiacea
 Serolidae, 136
 Serolis
 carinata, 137
 mgrayi, 137
 vemae, 136
 Seta (pl. setae): hair or spine on isopod (no true setae are ever found on arthropods, but the term is in general use)
 Skuphonura
 laticeps, 91
 Speciosirolana
 bolivari, 176
 pelaezi, 176
 Sphaeroma
 barrerae, 129
 destructor, 128
 pentodon, 129
 quadridentatum, 128
 Sphaeromatidae, 114
 Spiniform: type of molar process in Jaeropsis, Fig. 37e, and p. 286
 Squama: antennal scale, 35
 Statocyst, 91
 Stegias
 clibanarii, 322
 Stegophryxus
 hyptius, 321
 Stenetriidae, 238
 Stenetroidea (superfamily), 230, Pleopods, 238
 Stenetrion
 antillense, 240
 occidentale, 239
 serratum, 239
 stebbingi, 377
 Storage of specimens, 29
 Stortherygura
 caribbea, 307
INDEX

magnispinis, 308
snanoi, 307
truncata, 306
tremae, 308
Subchelate: modified claw, 5, 32
Subrostral process: see frontal lamina
Sympod: basis of uropod, 40
Syncarida, 5
Syneurycope
 hanseni, 304
 parallelata, 303
Synidotea
 angulata, 68
 bicuspida, 63
 calcarea, 68
 consolidata, 66
 erosa, 66
 harfordi, 67
 laevis, 70
 latiscuda, 67
 magnifica, 69
 marmorata, 64
 muricata, 69
 nebulosa, 67
 nodulosa, 70
 pallida, 65
 pettiboneae, 65
 picta, 70
 ritteri, 64
Synsynella
 deformans, 338
Syscenus
 infelix, 97

T
Tagma (pl. tagmata): functional
group of body segments—cepha-
lon, peraeon and pleon, 7
Tanaidacea, 4, 5
Taxon (pl. taxa): any category of
classification—e.g., species, gen-
us, suborder, class, etc.
Tecticeps
 alascensis, 116
 convexus, 116
 pugettensis, 117
Telotha
 henseli, 162
Telson: posterior or last body seg-
ment—see also pleotelson
Tergum (pl. terga): upper part of
peraeon
Thorax: see peraeon
Tridentella
 virginianna, 213
Trilobite, 2
Troglocirolana
 cubensis, 188
Tubercles: small bumps
Tubiferous: isopod from tubular
burrow—e.g., anthurid
Type-species: species, usually first
described, on which genus is de-

U
Unguis: claw
Uromunna: see Munna
Uropod, 40
 Exopod—outer branch
 Endopod—inner branch

V
Valve: uropod covering branchial
cavity of valviferans, 48
Valvifera (suborder), 48
 General nomenclature, 48
 Maxillipeds, 49

W
Wood-boring isopod, 128, 138

X
Xananthura
 brevitelson, 92
Isopods with first coxal plate free (not fused to exoskeleton)

- Bathynomus
- Anuropus
- Plakarthrium
 - some asellotes
 - some epiroctids
 - some phreatoicids

Isopods with appendix masculinum attached distally on endopod

- Plakarthrium (mediodistally on endopod)
- serolidae
cerceis, Paracerceis, Geacerceis
cleantioides (medially on endopod)
Coupling

exopod — (outer lot)

endopod — (inner lobe)

Maxilla 1
(= maxillula)
 (= maxillula)
(pl. = maxillulae)

Maxilla 2
(pl. = Maxillae)

exopod — (outer lobe)

endopod — (inner lobe)

exopod — (bifurcate outer lobe)

protopod — (peduncle)

appendix masculinum

Pleopods: Trille (1972) claims anterior plp. is exopodite; posterior plp. is endopodite with appendix masculinum. Hale (1929) agrees.

Antenna 1: generally of 3 peduncular articles.

Antenna 2: generally of 4-5 peduncular articles (actually 5-6 but basal almost not visible, except in some ocellotes)
Fig. 316.—Maxillipeds of (a) Euidotea peronii, (b) Synischia levidensis and (c) Crabycos longicaudatus (x 16-40).

From Hale (1929)